Prev

Next

The similarities and differences between industrial... 1. definition of industrial 4G router and industrial switch   Industrial 4G router:   Industrial 4G router is a network device responsible for path finding. It provides users with communication by finding the least communication from multiple paths in the interconnection network. Industrial 4G router...

更多文章

4g router features of E-lins Technology With the development of new communication technologies and the continuous improvement of network efficiency and function of wireless communication, 4G has been widely used. 4G industrial-grade wireless routers are playing an increasingly important role in the applications of various industries, and the price is getting...

更多文章

E-Lins Industrial router applications Industrial-grade routers as Internet network layer communication equipment application in all walks of life, brought a lot of convenience for our industry. "E-Lins" introduce the application of industrial router scenario analysis.   1 The self-service terminal network   E-lins industrial router networking...

更多文章

Classification of 4G industrial routers There are many types of 4G industrial routers, which can be divided into different categories from different perspectives. Different types of 4G industrial routers can be used in different environments. The following sections classify the 4G industrial routers from different perspectives. According to the performance From...

更多文章

Dual SIM Router vs. Dual Radio Router Projects are looking to save their enterprises time and money ask us this very often: “When would I need to use dual SIMs, and in what situations should I consider dual radio dual sim router?” In order to make this clear, let’s take a quick look at the dual SIM and dual SIM dual radio module functionality. Dual...

更多文章

twitter

IoT Applications

文章目录 : 其他, 技术相关

According to Gartner, Inc. (a technology research and advisory corporation), there will be nearly 20.8 billion devices on the Internet of things by 2020. ABI Research estimates that more than 30 billion devices will be wirelessly connected to the Internet of things by 2020. As per a 2014 survey and study done by Pew Research Internet Project, a large majority of the technology experts and engaged Internet users who responded—83 percent—agreed with the notion that the Internet/Cloud of Things, embedded and wearable computing (and the corresponding dynamic systems) will have widespread and beneficial effects by 2025. As such, it is clear that the IoT will consist of a very large number of devices being connected to the Internet. In an active move to accommodate new and emerging technological innovation, the UK Government, in their 2015 budget, allocated £40,000,000 towards research into the Internet of things. The former British Chancellor of the Exchequer George Osborne, posited that the Internet of things is the next stage of the information revolution and referenced the inter-connectivity of everything from urban transport to medical devices to household appliances.

Integration with the Internet implies that devices will use an IP address as a unique identifier. However, due to thelimited address space of IPv4 (which allows for 4.3 billion unique addresses), objects in the IoT will have to use IPv6to accommodate the extremely large address space required. Objects in the IoT will not only be devices with sensory capabilities, but also provide actuation capabilities (e.g., bulbs or locks controlled over the Internet). To a large extent, the future of the Internet of things will not be possible without the support of IPv6; and consequently the global adoption of IPv6 in the coming years will be critical for the successful development of the IoT in the future.

The ability to network embedded devices with limited CPU, memory and power resources means that IoT finds applications in nearly every field. Such systems could be in charge of collecting information in settings ranging from natural ecosystems to buildings and factories, thereby finding applications in fields of environmental sensing and urban planning.

On the other hand, IoT systems could also be responsible for performing actions, not just sensing things. Intelligent shopping systems, for example, could monitor specific users’ purchasing habits in a store by tracking their specific mobile phones. These users could then be provided with special offers on their favorite products, or even location of items that they need, which their fridge has automatically conveyed to the phone. Additional examples of sensing and actuating are reflected in applications that deal with heat, electricity and energy management, as well as cruise-assisting transportation systems. Other applications that the Internet of things can provide is enabling extended home security features and home automation. The concept of an “Internet of living things” has been proposed to describe networks of biological sensorsthat could use cloud-based analyses to allow users to study DNA or other molecules.

However, the application of the IoT is not only restricted to these areas. Other specialized use cases of the IoT may also exist. An overview of some of the most prominent application areas is provided here. Based on the application domain, IoT products can be classified broadly into five different categories: smart wearable, smart home, smart city, smart environment, and smart enterprise. The IoT products and solutions in each of these markets have different characteristics.

 

发表评论

You must be logged in to post a comment.