Prev

Next

Industrial-grade 4G router TCP/IP network architecture 1. Layering of TCP/IP network system   TCP/IP (TransmissionControlProtocol/InternetProtocol), transmission control protocol/Internet protocol. It was developed by the defense advanced research projects agency in the 1970s, and was later integrated into UNIX and popularized. It emerged in the 1980s as the Internet's...

更多文章

The structure of 4G DTU The main function of DTU is to transmit data from remote devices back to the background center via wired/wireless. Different data transmission modes of DTU include all-network-connected DTU, GPRS DTU, WIFI DTU, CAN DTU and 4G DTU. Today, we will have a look at the structure and work flow of DTU.   To complete...

更多文章

What are the wireless connection technologies of the... Internet of things (iot) applications have been deeply rooted in our lives. The E-Lins H685 industrial-grade router is a small industrial-grade wireless router with single or double LAN ports. TDD/ fdd-lte, 4G, 3G, GPRS network optional. Besides, what are the wireless connectivity technologies for the Internet of things?   1....

更多文章

The use of industrial wireless routers Industrial-grade wireless router adopts high performance 32-bit industrial-grade ARM9 communication processor, which is widely used in finance, electric power, postal, water conservancy, environmental protection, meteorology and other industries.   Industrial router is mainly used in intelligent transportation,...

更多文章

Cascade and stack of industrial-grade 4G routers The most basic star Ethernet architecture, the actual star enterprise network may be much more complex than this. This renaturation is not only reflected in how high-end network equipment, how complex configuration, more importantly, the performance of network switching level is more complex. Industrial routers and firewalls...

更多文章

twitter

Difference in between LTE FDD and TDD?

文章目录 : 其他

What is difference in between LTE FDD & TDD?

In both LTE FDD and LTE TDD, the transmitted signal is organized into subframes of 1 millisecond (ms) duration and 10 subframes constitute a radio frame. Each subframe normally consists of 14 OFDM symbols (12 OFDM symbols in case of the so-called Extended Cyclic Prefi).

Although the frame structure is, in most respects, the same for LTE FDD and LTE TDD, there are some differences between the two, most notably the use of special subframes in TDD. Another difference is the other subframes are allocated either for uplink transmission or for downlink transmission.

In case of FDD operation, there are two carrier frequencies, one for uplink transmission (fUL) and one for downlink transmission (fDL). During each frame, there are consequently 10 uplink subframes and 10 downlink subframes and uplink and downlink transmission can occur simultaneously within a cell.

In case of TDD operation, there is only one single carrier frequency and uplink and downlink transmissions in the cell are always separated in time. As the same carrier frequency is used for uplink and downlink transmission, both the base station and the mobile terminals must switch from transmission to reception and vice versa. Thus, as a subframe is either an uplink subframe or a downlink subframe, the number of subframes per radio frame in each direction is less than 10.

Check further info at www.e-lins.com for 4G LTE info.

发表评论

You must be logged in to post a comment.