Prev

Next

伊林思_工业无线路由器OSPF链路类型(Link... 工业无线路由器OSPF链路类型(Link Type) 巧玲珑OSPF确实因为考虑问题的全面,而导致路由协议的复杂,OSPF不仅因为不同的二层链路层介质定义了不同的OSPF网络类型(Network Type),还因为链路上的邻居,而定义了OSPF链路类型(Link Type) 。 OSPF网络类型(Network...

更多文章

工业路由器的Network Summary LSA 工业路由器:Network Summary LSA ABR工业级路由器始发,用于通告该区域外部的目的地址, 可以使用show ip ospf database summary查看LSA 如果ABR知道有多条路径可以到达目标地址,但是它仍然只发送单个的Network Summary LSA,并且是开销最低的那条;同样,如果ABR从其他的ABR那里收到多条Network...

更多文章

工业4G路由器BGP邻居的flaping •工业路由器通过IGP学到对方loopback,并用looback建EBGP邻居 •又在BGP中通告此loopback。此时BGP邻居会出现flaping R1和R2之间运行一个IGP协议,比如说EIGRP。将环回口都宣告进去,这样R1和R2相互之间就有对方环回口的工业级路由器路由了,然后再用环回口建立EBGP邻居关系。最后再把2.2.2.0和1.1.1.0的环回口宣告进BGP。这时你会发现工业无线路由器BGP路由会发生flapping。 原因一:无线路由器 •首先R1和R2之间运行了EIGRP,学到对方的环回口工业级无线路由器路由是一条EIGRP路由,管理距离是90 •而当这两个环回口宣告进BGP后,R1和R2又通过BGP学到对方环回口路由,管理距离是20 •这时,全网工业级路由器BGP路由由于管理距离最小,会进入全网工业路由器路由表,取代EIGRP路由 •问题在于,现在的全网通工业路由器BGP路由是有问题的,下一跳是不可达的 R2收到的1.1.1.0的BGP路由下一跳是R1的环回口1.1.1.1 R1收到的2.2.2.0的BGP路由下一跳是R2的环回口2.2.2.2 •BGP有一个检查机制,每60S检查一次BGP路由,看是否有效,60S后就会检查到这些工业级全网通路由器路由并设为无效 •BGP路由无效以后,在路由表中就没有了,EIGRP路由又起作用了。 •有了EIGRP路由,BGP路由的下一跳有可达了。又有效了。 •BGP邻居有效以后,又会抢占了EIGRP路由的地位,又会导致全网通工业级路由器BGP路由下一跳不可达。 原因二:4g路由器 •首先R1和R2之间运行了EIGRP,学到对方的环回口工业全网通路由器路由是一条EIGRP路由,管理距离是90 •而当这两个环回口宣告进BGP后,R1和R2又通过BGP学到对方环回口路由,管理距离是20 •这时,工业级全网路由器BGP路由由于管理距离最小,会进入路由表,取代EIGRP路由 •问题在于,现在的工业4G路由器BGP路由是有问题的,下一跳是不可达的 R2收到的1.1.1.0的工业级4G路由器BGP路由下一跳是R1的环回口1.1.1.1 R1收到的2.2.2.0的BGP路由下一跳是R2的环回口2.2.2.2 •路由不可达就造成两个邻居之间没法发送keeplive •180S后BGP邻居关系超时,并DOWN掉。这时EIGRP路由又起作用了。 •有了EIGRP路由,BGP邻居关系又可以建立了。 •BGP邻居有效以后,工业全网路由器BGP路由又会抢占了EIGRP路由的地位,又会导致BGP邻居再一次DOWN掉。 标签:全网通路由器 ...

更多文章

工业路由器OSPF建立邻居到LSA的互换的交换过程 从工业路由器OSPF建立邻居,到LSA的互换,到路由表的计算,需要经过一系列的工业级路由器数据包交换过程,过程如下: Hello ↓ Database Description Packets (DBD) ↓ Link-state Request (LSR) ↓ Link-state update(LSU) ↓ LSDB 具体情况如下: Hello Hello包是用来建立和维护工业无线路由器OSPF邻居的,要交换LSA,必须先通过Hello包建立工业级无线路由器OSPF邻居。 Database...

更多文章

伊林思:工业4g路由器区域分离你清楚吗? 工业4g路由器区域分离 区域分离的操作与区域合并的正好相反。区域分离可以将原有的一个区域分离为两个不同的区域。如下图所示,R1与R2都为L1/2工业路由器。起初R1和R2属于同一个区域中,都拥有相同的区域地址49.0001,之间形成了L1和L2邻接关系,共享相同的L1和L2链路状态数据库。现在需要将这两个区域分离开。与区域合并一样,可以先赋予R2两个全网通工业路由器NET地址,区域地址分别为49.0001和49.0002。之后再将R2原先区域地址为49.0001的NET地址删除,这时由于R1和R2处于不同的区域,L1邻接关系将不存在,但L2邻接关系和L2链路状态数据将保留,此时便完成了全网通工业级路由器区域分离。 重编址 重编址过程与区域合并、区域分离相似,重编址可能需要清除一些或者全部工业级路由器的区域前缀,用新的区域前缀代替。如下图所示,现在希望将原先的49.0001区域迁移到49.0002区域,这就需要更改工业级无线路由器上的区域地址。R1和R2属于同一个区域49.0001中,要将R1和R2迁移到49.0002区域中,可以为R1和R2都赋予两个NET地址,两个NET地址包含不同的区域地址,49.0001和49.0002,然后依次删除R1和R2的包含49.0001区域地址的NET地址,这样就实现了工业无线路由器新的NSAP地址的无缝、无冲突的重新配置。 注意,IS-IS多宿主与IP中的辅助地址(secondanaryIP)是不同的,辅助地址可以在同一条工业级全网通路由器链路上创建多个隔离的逻辑子网。另外,辅助IP地址是在一条链路上配置多个子网。 工业无线路由器NSEL NSEL定义了网络层服务的用户,工业全网通路由器路由层是特殊的网络层服务用户,它的NSEL值为0。之前多次提到,在IS-IS工业4G路由器上配置的NSAP地址采用00作为NSEL,这时NSAP地址被称为NET。NSEL的值与IP报头中的协议类型或TCP/UDP报头中的TCP、UDP端口号类似,NSEL帮助网络层把数据发送到适当的应用程序或服务。在OSI分层模型中,网络层服务的是传输层。目标不是路由进程的CLNP数据包具有非0的NSEL值的NSAP地址,表示节点需要将数据发送到传输层。我们在使用IS-IS进行工业级4G路由器IP路由选择中,只要记住始终保持NSEL为00即可。全网通4g路由器

更多文章

twitter

4g路由器:工业无线路由器路由协议想要实现目标

文章目录 : 产品文章

工业无线路由器路由协议想要实现目标

你能够想象如果每个工业无线路由器都存储从它的节点所能到达的每个目标点所需的信息,很可能该工业路由器会积累一张庞大的路由表。由于物理上(cpu,内存)的限制工业级路由器很难有时就根本不可能处理一个庞大的路由表。因此在不影响到达每个目的地的能力的情况下,我们要使路由表最小化。例如,一个工业无线路由器通过连接到另一个工业4g路由器一个DS1链路连接到Internet,那么这个工业级4g路由器可以将Internet上所有节点的信息都存储,或者它也可以将所有DS1串行链路外的非本地的信息都不存储。也就是说工业3G路由器没有在它的路由表中存储任何有关数据“包”要寻找的非本地网络目的地的信息,而是将这些“包”发送到串行链路另一端的工业级3G路由器,由这个全网路由器来提供必要的信息。我们常把像本例中我们所说的在串行DS1链路另一端的工业全网通路由器称为“Gateway of Last Resort”。这种简单的小把戏可以替路由表节省30个数量级的条目。路由信息没有必要被过于频繁地在工业级全网通路由器之间交换。通常路由表中的搅拌器给任何全网通工业路由器所能提供的贫乏的内存和CPU施加了许多不必要的压力。信息的复制不应该影响路由器的转发操作。尽管没有必要每毫秒都刷新路由表,当然也不能每隔一个星期才刷新一次路由表。路由的一重要的目标就是为主机提供能够准确反映当前网络状态的一张路由表。

全网通工业级路由器最重要的操作是将接收的包发送到正确的路径。未经路由的包可能会导致数据丢失。而路由表的不一致将会导致路由环路并使某个数据包在两个相邻的界面之间被循环发送。

人们十分希望所有的全网通路由器都能有快速的收敛性。收敛性可以被非正式地定义为计量所有工业LTE路由器获得一致的网络视图的速度的单位。人们希望有极小的收敛时间,因为如此网络上的每个工业级LTE路由器即使在网络拓扑(即网络视图)被严重改变的情况下也能准确地反映当前的网络拓扑。当网络拓扑被改变时,每个工业全网路由器必须传输数据以帮助其它工业级全网路由器来收敛出正确的网络视图。但是在刷新路由表时快速收敛也存在着它的问题。如果一个链路在迅速地振动(一会儿断开,一会儿合上),它会产生大量的安装和撤销的请求。这个链路最终将会耗尽网络上每个工业TD-LTE路由器的资源,因为其它工业EVDO路由器被强迫快速安装或撤消这个路由。因此,即使快速收敛是路由协议的目标,它也不是所有网络难题的万能药。全网4g通路由器

发表评论

You must be logged in to post a comment.